might be regarded as an incipient second Lewis acidbase interaction, but the geometry at the chlorine atom, where $\mathrm{C}-\mathrm{Cl} \cdots \mathrm{N}$ is approximately 90°, makes it unlikely. Returning to the bromo compound, if we make the same calculation, but with a $\mathrm{CN} \cdots$ Brdistance of $3.06 \AA$ between the cyanide group and the bromine atom in the para position on the next molecule, and further require that all $\mathrm{Br} \cdots \mathrm{Br}$ distances be $4.00 \AA$ or greater, with interlayer spacing of $3 \cdot 45 \AA$, thus shifting the $\mathrm{CN} \cdots \mathrm{Br}$ interaction from the ortho to the para bromine atom, we find a molecular volume of $230 \AA^{3}$, about 3% larger than in the actual stiucture. Presumably, the actual structure occurs because its greater packing efficiency, and therefore greater van der Waals energy, more than offsets the failure to make the best (linear) $\mathrm{CN} \cdots \mathrm{Br}$ contact.

We thank the National Science Foundation for their support of this work and the National Aeronautics and Space Administration for a fellowship to V.B.C. We also thank Richard Gehrz, Henry Grote, and Roger Kwong for their assistance.

References

Bjorvatten, T. (1968). Acta Chem. Scand. 22, 410.
Borgen, B., Hassel, O. \& Rømming, C. (1962). Acta Chem. Scand. 16, 2469.
Bredig, M. A. (1930). Z. Kristallogr. 74, 56.
Britton, D. (1967). Perspect. Struct. Chem. 1, 109.
Christensen, T. A. \& Strømme, K. O. (1969). Acta Cryst. B25, 657.
Geller, S. \& Schawlow, A. L. (1955). J. Chem. Phys. 23, 779.

Gol'der, G. A., Zdanov, G. S. \& Umanskij, M. M. (1952). Z. Fiz. Khim. SSSR, 26, 1434, per Struct. Rep. 16, 510.

Heiart, R. B. \& Carpenter, G. B. (1956). Acta Cryst. 9, 889.

International Tables for X-ray Crystallography (1962). Vol. III, p. 201. Birmingham: Kynoch Press.
Ketelaar, J. A. A. \& Zwartsenberg, J. W. (1939). Rec. Trav. chim. Pays-Bas, 58, 448.
Schlemper, E. O. \& Britton, D. (1965). Acta Cryst. 18, 419.

Silverman, J., Yannoni, N. \& Krukonis, A. P. (1969). Acta Cryst. A25, S 139.

The Crystal Structures of $\mathrm{BrC}(\mathrm{CN})_{3}, \mathrm{ClC}(\mathrm{CN})_{3}$, and $\mathrm{CH}_{3} \mathrm{C}(\mathrm{CN})_{3}$

By Jerry R. Witt
Department of Chemistry, Winona State College Winona, Minnesota, U.S.A.
and Doyle Britton and Carol Mahon
Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, U.S.A.

(Received 11 June 1971)
Bromotricyanomethane, $\mathrm{BrC}(\mathrm{CN})_{3}$, is orthorhombic, space group Pbca $\left(D_{2 h}^{15}\right)$, with $a=6.09(1), b=$ $11 \cdot 49$ (2), and $c=17.62$ (3) \AA; there are eight molecules in the unit cell. The structure has been determined from three-dimensional Weissenberg film data and refined by least-squares methods to a conventional R of $0 \cdot 15$. The structure contains tetrahedral $\operatorname{BrC}(\mathrm{CN})_{3}$ molecules with normal bond distances and angles. The packing is dominated by a short intermolecular $\mathrm{N} \cdots \mathrm{Br}$ distance of $3.03 \AA$ and two short $\mathrm{N} \cdots \mathrm{C}$ distances of $3 \cdot 18$ and $3 \cdot 20 \AA$. Chlorotricyanomethane, $\mathrm{ClC}(\mathrm{CN})_{3}$, and $1,1,1$-tricyanoethane, $\mathrm{CH}_{3} \mathrm{C}(\mathrm{CN})_{3}$, are isomorphous, both hexagonal, space group $P 6_{3} / m$ ($C_{6, n}$), with identical cell constants $a=10.23$ (2) and $c=9.95$ (2) \AA; there are six molecules in the unit cell. Both structures were solved from three-dimensional Weissenberg data and were refined by least-squares methods: $\mathrm{ClC}(\mathrm{CN})_{3}$ to an R of $0.088, \mathrm{CH}_{3} \mathrm{C}(\mathrm{CN})_{3}$ to an R of 0.155 . The structures contain tetrahedral molecules with required mirror symmetry; these molecules also have normal bond distances and angles. Short intermolecular distances were found between a nitrogen atom on one molecule and three cyanide carbon atoms on the next; $\mathrm{N} \cdots \mathrm{C}$ is approximately $3 \cdot 10 \AA$ in all cases. These interactions lead to the formation of weakly bound trimers. Orthorhombic and monoclinic modifications of $\mathrm{ClC}(\mathrm{CN})_{3}$ were also found.

Introduction

As part of a continuing study of weak Lewis acid-base interactions (see the preceding paper for a more extensive introduction) we have determined the crystal structures of bromo-, chloro-, and methyltricyanomethane, $\mathrm{XC}(\mathrm{CN})_{3}$, where $\mathrm{X}=\mathrm{Br}, \mathrm{Cl}$, or CH_{3}, to deter-
mine whether any unusual intermolecular interactions are present. These compounds are all unstable and volatile so that low-temperature measurements would be required for accurate structure determinations. However, since our main interest is in the packing, we have used the available equipment to determine the structures at room temperature.

Experimental

Preparation

$\mathrm{BrC}(\mathrm{CN})_{3}$ was prepared by the procedure of Dr H . D. Hartzler (1963) of E. I. du Pont de Nemours and Co., Central Research Department. A solution of 0.03 mole of bromine in 10 ml of benzene was added dropwise to a suspension of 0.03 mole $\mathrm{AgC}(\mathrm{CN})_{3}$ in 30 ml benzene, under dry nitrogen at room temperature. After 30 minutes of stirring, the solution was decanted from the silver bromide precipitate and evaporated to dryness under vacuum. The pale yellow powder was sublimed at 50° to give small white needles of the desired product. The melting point, 74°, agrees with that of Hartzler ($72-74 \cdot 2^{\circ}$) and with that reported earlier by Birkenback \& Huttner (1929) (74 ${ }^{\circ}$). Crystals suitable for X-ray diffraction were grown by sublimation under reduced pressure at a few degrees above room temperature; it was necessary to coat the condensation surface with stopcock grease in order to be able to remove the crystals without serious damage. The crystals decomposed slowly on standing; crystals exposed to X-rays turned red in a few days, and decomposed to a powder in less than two weeks. This instability had a severe effect on the quantity and quality of the X-ray data.

A sample of $\mathrm{ClC}(\mathrm{CN})_{3}$, prepared by Dr S . Trofimenko, was supplied by Dr Hartzler (Trofimenko, Little \& Mower, 1962). Crystals suitable for X-ray diffraction studies were grown by sublimation under reduced pressure at slightly above room temperature. The crystals (m.p. 47°) sublimed very readily and the problem was to avoid crystals that were too large. The heat of the hand provided better control than any other heating method found.
$\mathrm{CH}_{3} \mathrm{C}(\mathrm{CN})_{3}$ was prepared from $\mathrm{AgC}(\mathrm{CN})_{3}$ and $\mathrm{CH}_{3} \mathrm{I}$ by the method of Hantzsch \& Osswald (1899). The m.p. (95°) and the analysis (C-56.92\%, H-3.02\%) agreed with the expected values of m.p. $93 \cdot 5^{\circ}$ and

C-57.13 \%, H-2.88 \%. Suitable crystals were grown by sublimation at reduced pressure.
In all cases, crystals were sealed in glass capillaries before being used for X-ray studies.

Unit cells and space groups

The crystals were examined by precession photography (Mo K α. radiation, $2=0.7107 \AA$) and by Weissenberg and oscillation photography (Mo K α radiation and $\mathrm{Cu} K \alpha$ radiation, $\lambda=1.5418 \AA$). Crystal data are listed in Table 1. Although individual photographs gave smaller errors, we regard the probable errors to be one part in 600 for the precession photographs and one part in 300 for the Weissenberg and oscillation photographs.
Systematic extinctions ($0 k l, k=2 n+1 ; h 0 l, l=2 n+1$; $h k 0, h=2 n+1)$ for $\mathrm{BrC}(\mathrm{CN})_{3}$ indicate the space group to be Pbca. Fensch \& Wagner (1938) concluded that the space group was Pbcm , but their list of observed reflections agrees with ours and with space group Pbca.
The first crystal of $\mathrm{ClC}(\mathrm{CN})_{3}$ examined appeared to be monoclinic; it decomposed during the third photograph taken, and no other monoclinic crystals were ever found. Nevertheless, it would appear from the molecular volume, that this was $\mathrm{ClC}(\mathrm{CN})_{3}$ and no accidental impurity. Numerous orthorhombic crystals were found, all of which gave poor diffraction photographs and which were probably twinned. Systematic extinctions ($0 k l$, none; $h 0 l, h=2 n+1 ; h k 0$, not determined; $h k l$, none) indicate the diffraction symbol to be $P-a$?. The dimensions and the part of the diffraction symmetry that could be determined, make it clear that this form of $\mathrm{ClC}(\mathrm{CN})_{3}$ is not isomorphous with the bromo compound. No crystals of this form suitable for intensity photographs were found. A hexagonal third form, which was exactly isomorphous with the methyl compound, was also found. Systematic extinctions $(00 l, l=2 n+1)$ indicate the space group to be

Table 1. Crystal data for $\operatorname{BrC}(\mathrm{CN})_{3}, \mathrm{ClC}(\mathrm{CN})_{3}$, and $\mathrm{CH}_{3} \mathrm{C}(\mathrm{CN})_{3}$

	$\mathrm{BrC}(\mathrm{CN})_{3}$	$\mathrm{BrC}(\mathrm{CN})_{3}$	$\mathrm{ClC}(\mathrm{CN})_{3}$	$\mathrm{ClC}(\mathrm{CN})_{3}$	$\mathrm{ClC}(\mathrm{CN})_{3}$	$\mathrm{CH}_{3} \mathrm{C}(\mathrm{CN})_{3}$
	This work	Fensch \& Wagner (1938)	88) This work	This work	This work	This work
a	6.09 (1) * \AA	$6.06 \dagger \AA$	6.55 (1) \AA	5.57 (2) $\ddagger \AA$	$10 \cdot 23$ (2) \AA	10.23 (2) \AA
b	11.49 (2)	$11.35 \dagger$	$9 \cdot 45$ (2)	$9 \cdot 26$ (3)	-	
c	$17 \cdot 62$ (3)	$\begin{aligned} & 17 \cdot 20 \\ & (17 \cdot 74) \dagger \end{aligned}$	18.3 (1)	$11 \cdot 48$ (4)	9.95 (2)	$9 \cdot 95$ (2)
System	Orthorhombic	Orthorhombic	Orthorhombic	Monoclinic	Hexagonal	Hexagonal
Space group	Pbca	Pbcm \dagger	$P-a$?	?	$P 6{ }_{3} / m$	$P 63 / m$
Z	8	8	8	4	6	6
$D_{\text {obs }}$	-	$1.8 \mathrm{g} .\mathrm{~cm}{ }^{-3}$	$1.46 \mathrm{g.cm}{ }^{-3}$	-	-	$1 \cdot 18 \mathrm{g} .\mathrm{~cm}{ }^{-3}$
$D_{\text {cal }}$	1.831 (6)	$\begin{gathered} 1.91 \\ (1.84) \end{gathered}$	$1 \cdot 47$	1.46	$1 \cdot 387$ (4)	$1 \cdot 161$ (4)
Volume per molecule	$154 \AA^{3}$	$\begin{aligned} & 148 \AA^{3} \\ & (153) \end{aligned}$	$142 \AA^{3}$	$143 \AA^{3}$	$150 \AA^{3}$	$150 \AA^{3}$

[^0]Table 2. Positional and thermal parameters
Form of the anisotropic temperature factor is: $\exp \left[-\frac{1}{4}\left(B_{11} h^{2} a^{* 2}+\ldots+2 B_{12} h k a^{*} b^{*}+\ldots\right)\right]$.

	Position	x	y	z	B or B_{11}	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}
$\mathrm{BrC}(\mathrm{CN})_{3}$										
Br	8(c)	$0 \cdot 4485$ (6)	0.7291 (4)	$0 \cdot 1768$ (2)	$8 \cdot 0$ (2)	$13 \cdot 6$ (6)	$6 \cdot 4$ (2)	-1.0(2)	$-2 \cdot 2(1)$	$1 \cdot 8(2)$
$\mathrm{N}(1)$	$8(c)$	-0.0087 (38)	0.9063 (31)	$0 \cdot 1097$ (15)	$8 \cdot 8$ (7)					
$\mathrm{N}(2)$	8 (c)	0.5715 (35)	1.0412 (27)	0.2027 (13)	$6 \cdot 8$ (5)					
$\mathrm{N}(3)$	$8(c)$	0.5931 (38)	0.8578 (23)	-0.0135 (12)	$7 \cdot 9$ (6)					
C(1)	$8(c)$	$0 \cdot 1780$ (33)	$0 \cdot 8910$ (22)	$0 \cdot 1142$ (11)	$4 \cdot 8$ (5)					
C(2)	$8(c)$	0.5053 (35)	0.9642 (33)	$0 \cdot 1637$ (14)	$5 \cdot 2$ (5)					
C(3)	$8(c)$	0.5033 (29)	0.8676 (27)	0.0465 (12)	$4 \cdot 8$ (5)					
C(4)	8(c)	$0 \cdot 4003$ (26)	$0 \cdot 8719$ (21)	$0 \cdot 1195$ (9)	$3 \cdot 4$ (4)					
$\mathrm{ClC}(\mathrm{CN})_{3}$										
Cl	6(h)	$0 \cdot 5146$ (4)	$0 \cdot 4492$ (5)	$\frac{1}{4}$	$3 \cdot 0$ (1)	$4 \cdot 7$ (2)	$9 \cdot 6$ (7)	$0 \cdot 4$ (1)	-	-
N(1)	$6(h)$	0.2149 (15)	0.0551 (14)	$\frac{1}{4}$	$5 \cdot 0$ (6)	$3 \cdot 6$ (6)	$15 \cdot 3$ (22)	$2 \cdot 5$ (5)	-7	
$\mathrm{N}(2)$	12(i)	0.2172 (14)	$0 \cdot 4201$ (15)	0.0228 (24)	$7 \cdot 4$ (6)	$8 \cdot 1$ (7)	$13 \cdot 6$ (23)	$3 \cdot 8$ (6)	1.7 (9)	$2 \cdot 4$ (9)
C(1)	$6(h)$	$0 \cdot 2571$ (14)	$0 \cdot 1822$ (15)	$\frac{1}{4}$	$2 \cdot 5$ (5)	$3 \cdot 1$ (6)	13.2 (24)	$1 \cdot 3$ (4)		
$\mathrm{C}(2)$	12(i)	$0 \cdot 2578$ (14)	$0 \cdot 3876$ (12)	$0 \cdot 1347$ (25)	$5 \cdot 4$ (5)	$3 \cdot 7$ (4)	5.0 (21)	2.0 (4)	-0.4 (8)	$0 \cdot 6$ (7)
C(3)	6 (h)	$0 \cdot 3137$ (13)	$0 \cdot 3500$ (14)	1	$3 \cdot 2$ (5)	$3 \cdot 1$ (5)	$1 \cdot 5$ (21)	$1 \cdot 2$ (4)		-
$\mathrm{CH}_{3} \mathrm{C}(\mathrm{CN})_{3}$										
C(H)	$6(h)$	$0 \cdot 4989$ (13)	$0 \cdot 4282$ (14)	$\frac{1}{4}$	$1 \cdot 2$ (5)	$2 \cdot 3$ (5)	$6 \cdot 8$ (18)	-0.2 (4)	-	-
$\mathrm{N}(1)$	$6(h)$	$0 \cdot 2172$ (13)	0.0512 (12)	$\frac{1}{4}$	$3 \cdot 6$ (5)	$2 \cdot 6$ (5)	8.9 (17)	$2 \cdot 2$ (4)	1	1
$\mathrm{N}(2)$	12(i)	0.2274 (12)	0.4276 (12)	0.0358 (18)	$4 \cdot 4$ (4)	4.9 (5)	$8 \cdot 2$ (18)	$2 \cdot 2$ (4)	$0 \cdot 1$ (6)	$-0 \cdot 1$ (6)
C(1)	6(h)	0.2567 (12)	$0 \cdot 1779$ (12)	+	$1 \cdot 5$ (4)	$0 \cdot 5$ (4)	9.9 (19)	0.3 (3)	-	-
C(2)	12(i)	$0 \cdot 2662$ (11)	$0 \cdot 3846$ (11)	$0 \cdot 1316$ (25)	2.6 (4)	$2 \cdot 8$ (4)	$6 \cdot 8$ (17)	1.3 (3)	0.4 (7)	-0.6 (7)
C(3)	6(h)	$0 \cdot 3222$ (13)	$0 \cdot 3453$ (11)	$\frac{1}{4}$	$2 \cdot 0$ (5)	$0 \cdot 9$ (4)	$3 \cdot 2$ (18)	$0 \cdot 8$ (4)	-	-

$P 6_{3}$ or $P 6_{3} / m$; the latter was shown to be correct by the complete structure determination.

Determination of the structures

$\mathrm{BrC}(\mathrm{CN})_{3}$

The original data, from which the structure was solved approximately using Patterson and Fourier maps, were visually estimated three-dimensional Weissenberg film data (Mo $K \alpha$ radiation, $0 k l-3 k l$) obtained with a rather large crystal. Layers were correlated with a small number of precession film intensities. Quality of these data was poor and a second set of Weissenberg film data was collected ($\mathrm{Cu} K \alpha$ radiation, $h 0 l-h 5 l$) using an acicular crystal, elongated along \mathbf{b} and approximately cylindrical with a diameter of 0.1 mm . Oscillation data were also collected for layer correlation. Lorentz and polarization corrections were made, but not absorption corrections ($\mu=94.3 \mathrm{~cm}^{-1}$ for $\mathrm{Cu} K \alpha$ radiation).* There were 303 independent reflections of measurable intensity and 172 reflections in the same region of reciprocal space with intensities too weak to measure; the latter were included in the refinement, with intensities equal to half the minimum

[^1]Table 3. Observed and calculated structure factors for $\operatorname{BrC}(\mathrm{CN})_{3}(\times 1)$

observable intensity. Full-matrix least-squares refinement, with all atoms isotropic, converged with $r=$ $0 \cdot 216 ; R=0 \cdot 228$.* With the Br atom treated anisctropically, refinement converged at $r=0.095 ; R=0.148$. A difference Fourier map at this point showed no peak higher than $1.6 \mathrm{e} . \AA^{3}$. Final positional and thermal parameters are given in Table 2. Structure factors are given in Table 3.

$\mathrm{ClC}(\mathrm{CN})_{3}$

Weissenberg film data ($\mathrm{Cu} K \alpha$ radiation, $h k 0-h k 4$) were collected for the hexagonal modification of $\mathrm{ClC}(\mathrm{CN})_{3}$, using an acicular crystal elongated along \mathbf{c}, approximately cylindrical of diameter 0.1 mm . Oscillation data were collected for layer correlation. There were 218 independent reflections of measurable intensity and 187 more reflections in the same region of reciprocal space with intensities too weak to measure; the latter were not included in the calculations. Lorentz and polarization corrections were made, but not absorption corrections ($\mu=39.7 \mathrm{~cm}^{-1}$ for $\mathrm{Cu} K \alpha$ radiation). Atom positions were found from Patterson and Fourier maps. \dagger Full-matrix least-squares refinement, with all atoms isotropic, converged at $r=0 \cdot 140 ; R=$ $0 \cdot 198$. Refinement converged at $r=0 \cdot 079 ; R=0 \cdot 109$, with the Cl atom anisotropic and the light atoms isotropic. The highest peak on a difference Fourier map calculated at this point was $0.6 \mathrm{e} . \AA^{-3}$, compared with $4 \cdot 0$ e. \AA^{-3}, the height of the smallest atomic peak on the corresponding Fourier map. Although, as already mentioned, the quality of the data was not good (e.g. the $\mathrm{C}(2)$ and $\mathrm{N}(2)$ peaks were not resolved in the best Fourier map, and the amount of data was limited), it was decided to try refinement with all atoms anisotropic. Convergence was reached after three cycles with $r=0.0514, R=0.088$. Hamilton's (1965) test gives $\mathscr{R}_{19,176,0.005}=1 \cdot 15$ compared with $(0.0790 / 0.0514)^{1 / 2}=$ $1 \cdot 24$, so we report results of the final tefinement. \ddagger Parameters are given in Table 2. Structure factors are listed in Table 4.

[^2]Table 4. Observed and calculated structure factors for $\mathrm{ClC}(\mathrm{CN})_{3}$ and $\mathrm{CH}_{3} \mathrm{C}(\mathrm{CN})_{3}(\times 10)$

$\mathrm{CH}_{3} \mathrm{C}(\mathrm{CN})_{3}$

Weissenberg film data ($\mathrm{Cu} K \alpha$ radiation, $h k 0-h k 4$) were collected using an acicular crystal elongated along c, approximately cylindrical with a diameter of $0 \cdot 1$ mm . Oscillation data were collected for layer correlation. There were 191 reflections of measurable intensity and 54 reflections in the same region of reciprocal space with intensities too weak to measure; the latter were included in the eventual refinement with intensities equal to half the minimum observable intensity. Lorentz and polarization corrections were made, but not absorption corrections ($\mu=6.7 \mathrm{~cm}^{-1}$ for $\mathrm{Cu} K \alpha$ radiation). The compound was assumed to be isostructural with the chloro compound, and initial parameters were chosen on this basis. Full-matrix leastsquares refinement, with all atoms isotropic, converged at $r=0.130, R=0 \cdot 171$. With all atoms anisotropic, refinement converged at $r=0 \cdot 103, R=0 \cdot 154$. As with the chloro compound, the same objections to anisotropic refinement apply, but again a comparison of $\mathscr{R}_{22,203,0 \cdot 005}=1 \cdot 07$, with $(0 \cdot 130 / 0 \cdot 103)^{1 / 2}=1 \cdot 12$, leads us
to report the results of the anisotropic refinement. The final parameters are given in Table 2; the structure factors are listed in Table 4. A final difference Fourier map showed the highest peak to be $0.4 \mathrm{e} . \AA^{-3}$, compared with 5.4 e. \AA^{-3} for the lowest atomic peak in the corresponding Fourier map. No attempt was made to include the hydrogen atoms.

Results and discussion

The interatomic distances in the molecules are given in Table 5. In view of the instability of the crystals and the consequent low quality of the data we believe that the error estimates are optimistic, and that there are no demonstrated deviations from normal geometry and bond lengths in these molecules. Similarly, the anisotropic thermal parameters do not warrant any extensive rationalization.

Table 5. Bond lengths and angles in $\mathrm{XC}(\mathrm{CN})_{3}$

	$\mathrm{BrC}(\mathrm{CN})_{3}$	$\mathrm{ClC}(\mathrm{CN})_{3}$	$\mathrm{CH}_{3} \mathrm{C}(\mathrm{CN})_{3}$
$\mathrm{X}-\mathrm{C}(4)$	1.95 (2) \AA	1.78 (1) \AA	1.57 (2) \AA
$\mathrm{C}(4)-\mathrm{C}(1)$	$1 \cdot 37$ (3)	1.51 (2)	1.50 (2)
$\mathrm{C}(4)-\mathrm{C}(2)$	$1 \cdot 46$ (4)	1.42 (2)	1.45 (2)
$\mathrm{C}(4)-\mathrm{C}(3)$	$1 \cdot 43$ (3)	-	
$\mathrm{C}(1)-\mathrm{N}(1)$	1.15 (3)	$1 \cdot 15$ (2)	$1 \cdot 15$ (2)
$\mathrm{C}(2)-\mathrm{N}(2)$	$1 \cdot 19$ (4)	$1 \cdot 29$ (3)	$1 \cdot 20$ (2)
$\mathrm{C}(3)-\mathrm{N}(3)$	$1 \cdot 20$ (3)		
$\mathrm{X}-\mathrm{C}(4)-\mathrm{C}(1)$	108.6 (16) ${ }^{\circ}$	108.9 (10) ${ }^{\circ}$	$110 \cdot 8(13)^{\circ}$
$\mathrm{X}-\mathrm{C}(4)-\mathrm{C}(2)$	$105 \cdot 6$ (16)	$110 \cdot 7$ (6)	111.0 (7)
$\mathrm{X}-\mathrm{C}(4)-\mathrm{C}(3)$	111.7 (17)		
$\mathrm{C}(1)-\mathrm{C}(4)-\mathrm{C}(2)$	$110 \cdot 6$ (20)	109.3 (10)	$107 \cdot 7$ (7)
$\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{C}(3)$	$108 \cdot 1$ (20)	108.0 (21)	108.5 (21)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(1)$	112.0 (15)	-	(1)
$\mathrm{C}(4)-\mathrm{C}(1)-\mathrm{N}(1)$	179.6 (30)	179.7 (16)	$174 \cdot 9$ (14)
$\mathrm{C}(4)-\mathrm{C}(2)-\mathrm{N}(2)$	$173 \cdot 7$ (22)	$174 \cdot 0$ (20)	$175 \cdot 3$ (12)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{N}(3)$	$176 \cdot 3$ (30)	-	

Table 6. Intermolecular distances in $\mathrm{ClC}(\mathrm{CN})_{3}$
and $\mathrm{CH}_{3} \mathrm{C}(\mathrm{CN})_{3}$

Distance*		$\mathrm{ClC}(\mathrm{CN})_{3}$	$\mathrm{CH}_{3} \mathrm{C}(\mathrm{CN})_{3}$
a	$\mathrm{N}(1)-\mathrm{C}(1)$	3.09 §	3.09 A
b	$\mathrm{N}(1)-\mathrm{C}(2)$	3.09	$3 \cdot 11$
c	$\mathrm{N}(1)-\mathrm{C}(3)$	3.27	3.31
d	$\mathrm{N}(1)-\mathrm{N}(1)$	$3 \cdot 42$	$3 \cdot 48$
	$\mathrm{N}(1)-\mathrm{N}(2)$	3.55	$3 \cdot 49$
f	$\mathrm{N}(1)-\mathrm{X}$	3.39	$3 \cdot 58$
g	$\mathrm{N}(2)-\mathrm{C}(1)$	3.14	$3 \cdot 29$
h	$\mathrm{N}(2)-\mathrm{N}(1)$	$3 \cdot 30$	$3 \cdot 43$
i	$\mathrm{N}(2)-\mathrm{C}(2)$	$3 \cdot 45$	$3 \cdot 49$
${ }_{k}$	$\xrightarrow{N(2)-X}$	3.49 3.65	3.48 3.78
l	$\mathrm{X}-\mathrm{X}$	4.03	3.07

* See Fig. 2.

The point of interest for which these studies were undertaken, and which we believe is demonstrated in the results, is the packing of the molecules (Figs. 1 and 2). The short intermolecular distances in $\mathrm{BrC}(\mathrm{CN})_{3}$ are shown in Fig. 1; all $\mathrm{N} \cdots \mathrm{Br}$ and $\mathrm{Br} \cdots \mathrm{Br}$ distances less than $4 \cdot 0 \AA$, and all $\mathrm{N} \cdots \mathrm{N}$ and $\mathrm{N} \cdots \mathrm{C}$ distances
less than $3.5 \AA$, are indicated, as well as a few additional distances. The short intermolecular distances in $\mathrm{ClC}(\mathrm{CN})_{3}$ and $\mathrm{CH}_{3} \mathrm{C}(\mathrm{CN})_{3}$ are given in Table 6 (with reference to Fig. 2) for the same range of values.
We had expected in this study that $\mathrm{N} \cdots \mathrm{X}$ interactions might be stronger than the usual van der Waals interactions for $\mathrm{X}=\mathrm{Cl}$ and Br , but not for $\mathrm{X}=\mathrm{CH}_{3}$. The results do, indeed, show such an $\mathrm{N} \cdots \mathrm{Br}$ intelaction, as evidenced by the $3.03 \AA$ distance and the approximately linear $\mathrm{CN} \cdots \mathrm{Br}$ geometry. This dis-

Fig. 1. The crystal structure of $\operatorname{BrC}(\mathrm{CN})_{3}$. Top, view down \mathbf{c}; lower left, view down \mathbf{a}; lower right, view into \mathbf{b}. The same chain of molecules held together by $\mathrm{N} \cdots \mathrm{Br}$ interactions is emphasized in all three views. Intermolecular distances (in \AA) are given for all short contacts.

Fig. 2. The crystal structures of $\mathrm{ClC}(\mathrm{CN})_{3}$ and $\mathrm{CH}_{3} \mathrm{C}(\mathrm{CN})_{3}$. The view is down the c axis. The molecules centered at $z=\frac{1}{4}$ are emphasized. The distances corresponding to the intermolecular contacts indicated by the letters are given in Table 6.
tance may be compared with the sum of the usual van der Waals radii, $3 \cdot 45 \AA$ (Pauling, 1960; see also the discussion in the preceding paper). On the other hand, there is no unusual $\mathrm{N} \cdots \mathrm{Cl}$ contact in $\mathrm{ClC}(\mathrm{CN})_{3}$, a conclusion that might have been drawn from the isomorphism with $\mathrm{CH}_{3} \mathrm{C}(\mathrm{CN})_{3}$.
Before continuing to the next type of interaction we need to discuss the van der Waals radius of nitrogen. Pauling (1960) suggests $1 \cdot 5 \AA$ and Kitaigorodskii (1961) suggests $1.57 \AA$ for this radius. However, Donohue (1961), in refining the structure of α-nitrogen, pointed out that the $\mathrm{N} \cdots \mathrm{N}$ distance of $3.60 \AA$ did not agree with Pauling's value for the radius. Pursuing his argument with more recent data, we find in α-nitrogen (Jordan, Smith, Streib \& Lipscomb, 1964) a shortest $\mathrm{N} \cdots \mathrm{N}$ distance of $3.42 \AA$, and in the structure of γ-nitrogen a shortest $\mathrm{N} \cdots \mathrm{N}$ distance of $3.275 \AA$ at $20.5^{\circ} \mathrm{K}$ and 4015 atm (Schuch \& Mills, 1970). If we use the expansion of β-nitrogen between 4015 and 0 atm to predict the corresponding expansion of γ-nitrogen, then we should correct the $3.275 \AA$ value to $3 \cdot 44 \AA$, to agree with the α-nitrogen distance. From these results we conclude that $1 \cdot 7 \AA$ is a more reasonable value to use for the van der Waals radius for nitrogen, and that the smaller values given previously probably result from the frequent occurrence of weak but specific $\mathrm{N} \cdots \mathrm{X}$ interactions in crystals. This conclusion leads us to $3.4 \AA$ as the van der Waals distance for a $\mathrm{N} \cdots \mathrm{C}$ contact with no acid-base character. Similarly, Klug (1965) has suggested that the usual $\mathrm{O} \cdots \mathrm{C}$ van der Waals distance of $3 \cdot 10 \AA$ should be replaced by 3.3-3.4 \AA, and that a distance of $3 \cdot 10 \AA$ is abnormally short, i.e. it indicates an acid-base interaction.

Looking at our structures with the idea that $\mathrm{N} \cdots \mathrm{C}$ distances less than $3 \cdot 4 \AA$ are suggestive of acid-base contacts, we find several situations where there are such short distances. In each molecule there is one of these contacts that is also supported by the rest of the geometry. In the bromo compound, the CN group approximately parallel to the a axis points halfway between the two close CN groups in the next molecule, with $\mathrm{N} \cdots \mathrm{C}$ distances of $3 \cdot 18$ and $3 \cdot 20 \AA$. In the chloro and methyl compounds, the mirror-plane CN group points toward the central carbon atom of the next molecule, so that all of the $\mathrm{N} \cdots \mathrm{C}$ distances to the cyanide carbon atoms are approximately equal at $3 \cdot 10 \AA$ in both compounds. This leads to weakly bonded cyclic trimers about the c axis.

For comparison the following are some of the short $\mathrm{N} \cdots \mathrm{C}$ distances previously reported: cyanogen,
$3 \cdot 18$ and $3.26 \AA$ (Parkes \& Hughes, 1963); tetracyanoethylene, $3 \cdot 09,3 \cdot 12,3 \cdot 20$, and $3 \cdot 23 \AA$ (Bekoe \& Trueblood, 1960); 1,2,3-tricyanopropane, $3 \cdot 10 \AA$ (Hartman \& Hirshfeld, 1966); 1,2,3,4-tetracyanocyclobutane, $3 \cdot 07,3 \cdot 16,3 \cdot 18$, and $3 \cdot 19 \AA$ (Greenberg \& Post, 1968); tetracyanothiophene, 2.98 and $3.07 \AA$ (Rychnovsky \& Britton, 1968); tetracyano-1,4-dithiin, $3 \cdot 13,3 \cdot 15,3 \cdot 15$, $3 \cdot 18$, and $3 \cdot 19 \AA$ (Dollase, 1965); tetracyanoquinodimethane, $3 \cdot 18$ and $3 \cdot 22 \AA$ (Long, Sparks \& Trueblood, 1965).

We thank Drs H. D. Hartzler and S. Trofimenko for their help in obtaining the compounds used. Also, we thank the National Science Foundation for their support of this work.

References

Bekoe, D. A. \& Trueblood, K. N. (1960). Z. Kristallogr. 113, 1.
Birkenback, L. \& Huttner, K. (1929). Ber. disch. chem. Ges. 62 B, 153.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS, A Fortran Crystallographic Least-Squares Program. Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Dollase, W. A. (1965). J. Amer. Chem. Soc. 87, 979.
Donohue, J. (1961). Acta Cryst. 14, 1000.
Fensch, W. \& Wagner, G. (1938). Z. Phys. Chem. B41, 1. Greenberg, B. \& Post, B. (1968). Acta Cryst. B24, 918.
Hamilton, W. C. (1965). Acta Cryst. 18, 502.
Hantzsch, A. \& Osswald, G. (1899). Ber. dtsch. chem. Ges. 32, 641.
Hartman, A. \& Hirshfeld, F. L. (1966). Acta Cryst. 20, 80.

Hartzler, H. D. (1963). Private communication.
International Tables for X-ray Crystallography (1962). Vol. III, pp. 202 \& 215. Birmingham: Kynoch Press.
Jordan, T. H., Smith, H. W., Streib, W. E. \& Lipscomb, W. N. (1964). J. Chem. Phys. 41, 756.

Kitaigorodskir, A. I. (1961). Organic Chemical Crystallography, p. 7. New York: Consultants Bureau.
Klug, H. P. (1965). Acta Cryst. 19, 983.
Long, R. E., Sparks, R. A. \& Trueblood, K. N. (1965). Acta Cryst. 18, 932.
Parkes, A. S. \& Hughes, R. E. (1963). Acta Cryst. 16, 734.

Pauling, L. (1960). The Nature of the Chemical Bond, 3rd Ed. p. 260. Ithaca: Cornell Univ. Press.
Rychnovsky, V. \& Britton, D. (1968). Acta Cryst. B24, 725.

Schuch, A. F. \& Mills, R. L. (1970). J. Chem. Phys. 52, 6000.

Trofimenko, S., Little, E. L. \& Mower, H. F. (1962). J. Org. Chem. 27, 433.

[^0]: * Errors given are probable errors based on the method used for measurement.
 \dagger These are converted from kX units. It seems likely that $c=17.17 \mathrm{kX}$ was a misprint for $c=17.71 \mathrm{kX}$, since they gave $D_{\text {cal }}=1.82$ $\mathrm{g} . \mathrm{cm}^{-3}$. See the text for a discussion of the space group.
 \ddagger This is $a / \sin \beta . \beta$ was not determined.

[^1]: * Most of the calculations were done using programs prepared at Princeton University by Professor R. A. Jacobsen. The final refinements in each case were carried out using programs prepared by Dr L. W. Finger. Group refinements were made using a local modification of an earlier modification by Doedens of the program ORFLS (Busing, Martin \& Levy, 1962). All computer calculations were run on CDC 1604 or 6600 computers of the University of Minnesota Computer Center.

[^2]: * $R=\sum| | F_{o}\left|-\left|F_{c}\right|\right| / \Sigma\left|F_{0}\right|, r=\sum w\left(\left|F_{0}\right|^{2}-\left|F_{c}\right|^{2}\right)^{2} / \sum w\left|F_{o}\right|^{4}$, where the numerator of r is the function refined, $w=\left(F_{w} / F_{o}\right)^{4}$ for $F_{o}>F_{w}$ and $w=1$ for $F_{o} \leq F_{w}$; in the final refinement cycles, F_{w} was 18.5 for $\operatorname{BrC}(\mathrm{CN})_{3}, 8.6$ for $\mathrm{ClC}(\mathrm{CN})_{3}$, and 6.9 for $\mathrm{CH}_{3} \mathrm{C}(\mathrm{CN})_{3}$. Scattering factors for all atoms were taken from International Tables for X-ray Crystallography (1962). No anomalous dispersion corrections were made.
 \dagger The calculations for both the $\mathrm{ClC}(\mathrm{CN})_{3}$ and $\mathrm{CH}_{3} \mathrm{C}(\mathrm{CN})_{3}$ were made by expanding the data and parameter lists to correspond to monoclinic symmetry, and all calculations were performed as if the crystal were monoclinic, since the program used does not handle hexagonal symmetry.
 \ddagger To test the possibility that the proper space group is $P 6_{3}$ rather than $P 6_{3} / m$, data were refined with an idealized molecular geometry in $P 6_{3} / m$ (starting as close to the final parameters given in Table 2 as possible) and in $P 6_{3}$ (starting with the molecule rotated 3.3° away from coincidence with the mirror plane). After three cycles of refinement, the molecule in P_{6} had moved back toward the $P 6_{3} / m$ positions to the extent that no corresponding pair of atom positions differed by as much as one standard deviation; therefore, $P 6_{3} / \mathrm{m}$ was accepted as the correct space group.

